Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37953722

RESUMO

Exposure to insecticides may contribute to global insect declines due to sublethal insecticide effects on non-target species. Thus far, much research on non-target insecticide effects has focused on neonicotinoids in a few bee species. Much less is known about effects on other insect taxa or newer insecticides, such as sulfoxaflor. Here, we studied the effects of an acute insecticide exposure on both olfactory and visual learning in free-moving Polistes fuscatus paper wasps. Wasps were exposed to a single, field-realistic oral dose of low-dose imidacloprid, high-dose imidacloprid or sulfoxaflor. Then, visual and olfactory learning and short-term memory were assessed. We found that acute insecticide exposure influenced performance, as sulfoxaflor- and high-dose imidacloprid-exposed wasps made fewer correct choices than control wasps. Notably, both visual and olfactory performance were similarly impaired. Wasps treated with high-dose imidacloprid were also less likely to complete the learning assay than wasps from the other treatment groups. Instead, wasps remained stationary and unmoving in the testing area, consistent with imidacloprid interfering with motor control. Finally, wasps treated with sulfoxaflor were more likely to die in the week after treatment than wasps in the other treatment groups. Our findings demonstrate that sublethal, field-realistic dosages of both neonicotinoid- and sulfoximine-based insecticides impair wasp learning and short-term memory, which may have additional effects on survival and motor functioning. Insecticides have broadly detrimental effects on diverse non-target insects that may influence foraging effectiveness, pollination services and ecosystem function.


Assuntos
Inseticidas , Vespas , Animais , Abelhas , Inseticidas/toxicidade , Ecossistema , Neonicotinoides/toxicidade , Aprendizagem Espacial
2.
Ecol Evol ; 13(9): e10528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37736280

RESUMO

Vairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers-including the petals, stamen, and nectary-at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.

3.
Ecology ; 104(2): e3933, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448518

RESUMO

The dilution effect hypothesis posits that increasing biodiversity reduces infectious disease transmission. Here, we propose that habitat quality might modulate this negative biodiversity-disease relationship. Habitat may influence pathogen prevalence directly by affecting host traits like nutrition and immune response (we coined the term "habitat-disease relationship" to describe this phenomenon) or indirectly by changing host biodiversity (biodiversity-disease relationship). We used a path model to test the relative strength of links between habitat, biodiversity, and pathogen prevalence in a pollinator-virus system. High-quality habitat metrics were directly associated with viral prevalence, providing evidence for a habitat-disease relationship. However, the strength and direction of specific habitat effects on viral prevalence varied based on the characteristics of the habitat, host, and pathogen. In general, more natural area and richness of land-cover types were directly associated with increased viral prevalence, whereas greater floral density was associated with reduced viral prevalence. More natural habitat was also indirectly associated with reduced prevalence of two key viruses (black queen cell virus and deformed wing virus) via increased pollinator species richness, providing evidence for a habitat-mediated dilution effect on viral prevalence. Biodiversity-disease relationships varied across viruses, with the prevalence of sacbrood virus not being associated with any habitat quality or pollinator community metrics. Across all viruses and hosts, habitat-disease and biodiversity-disease paths had effects of similar magnitude on viral prevalence. Therefore, habitat quality is a key driver of variation in pathogen prevalence among communities via both direct habitat-disease and indirect biodiversity-disease pathways, though the specific patterns varied among different viruses and host species. Critically, habitat-disease relationships could either contribute to or obscure dilution effects in natural systems depending on the relative strength and direction of the habitat-disease and biodiversity-disease pathways in that host-pathogen system. Therefore, habitat may be an important driver in the complex interactions between hosts and pathogens.


Assuntos
Biodiversidade , Ecossistema , Abelhas , Prevalência
4.
Anim Cogn ; 26(2): 465-476, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36066686

RESUMO

Most recognition is based on identifying features, but specialization for face recognition in some taxa relies on a different mechanism, termed 'holistic processing' where facial features are bound together into a gestalt which is more than the sum of its parts. Although previous work suggests that extensive experience may be required for the development of holistic processing, we lack experiments that test how age and experience interact to influence holistic processing. Here, we test how age and experience influence the development of holistic face processing in Polistes fuscatus paper wasps. Previous work has shown that P. fuscatus use facial patterns to individually identify conspecifics and wasps use holistic processing to discriminate between conspecific faces. We tested face processing in three groups of P. fuscatus: young (1-week-old), older, experienced (2-weeks-old, normal experience), and older, inexperienced (2-weeks-old, 1 week normal social experience and 1 week social isolation). Older, experienced wasps used holistic processing to discriminate between conspecific faces. In contrast, older inexperienced wasps used featural rather than holistic mechanisms to discriminate between faces. Young wasps show some evidence of holistic face processing, but this ability was less refined than older, experienced wasps. Notably, wasps only required 2 weeks of normal experience to develop holistic processing, while previous work suggests that humans may require years of experience. Overall, P. fuscatus wasps rapidly develop holistic processing for conspecific faces. Experience rather than age facilitates the transition between featural and holistic face processing mechanisms.


Assuntos
Reconhecimento Facial , Vespas , Humanos , Animais , Reconhecimento Visual de Modelos , Reconhecimento Psicológico
5.
Proc Biol Sci ; 289(1979): 20221156, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35855600

RESUMO

Concept formation requires animals to learn and use abstract rules that transcend the characteristics of specific stimuli. Abstract concepts are often associated with high levels of cognitive sophistication, so there has been much interest in which species can form and use concepts. A key abstract concept is that of sameness and difference, where stimuli are classified as either the same as or different than an original stimulus. Here, we used a simultaneous two-item same-different task to test whether paper wasps (Polistes fuscatus) can learn and apply a same-different concept. We trained wasps by simultaneously presenting pairs of same or different stimuli (e.g. colours). Then, we tested whether wasps could apply the concept to new stimuli of the same type (e.g. new colours) and to new stimulus types (e.g. odours). We show that wasps learned a general concept of sameness or difference and applied it to new samples and types of stimuli. Notably, wasps were able to transfer the learned rules to new stimuli in a different sensory modality. Therefore, P. fuscatus can classify stimuli based on their relationships and apply abstract concepts to novel stimulus types. These results indicate that abstract concept learning may be more widespread than previously thought.


Assuntos
Formação de Conceito , Vespas , Animais , Aprendizagem , Odorantes
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1845): 20200450, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35000449

RESUMO

Animal groups are often organized hierarchically, with dominant individuals gaining priority access to resources and reproduction over subordinate individuals. Initial dominance hierarchy formation may be influenced by multiple interacting factors, including an animal's individual attributes, conventions and self-organizing social dynamics. After establishment, hierarchies are typically maintained over the long-term because individuals save time, energy and reduce the risk of injury by recognizing and abiding by established dominance relationships. A separate set of behaviours are used to maintain dominance relationships within groups, including behaviours that stabilize ranks (punishment, threats, behavioural asymmetry), as well as signals that provide information about dominance rank (individual identity signals, signals of dominance). In this review, we describe the behaviours used to establish and maintain dominance hierarchies across different taxa and types of societies. We also review opportunities for future research including: testing how self-organizing behavioural dynamics interact with other factors to mediate dominance hierarchy formation, measuring the long-term stability of social hierarchies and the factors that disrupt hierarchy stability, incorporating phenotypic plasticity into our understanding of the behavioural dynamics of hierarchies and considering how cognition coevolves with the behaviours used to establish and maintain hierarchies. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.


Assuntos
Cognição , Predomínio Social , Agressão , Animais
7.
Ecology ; 102(5): e03305, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571384

RESUMO

Most pathogens are embedded in complex communities composed of multiple interacting hosts, but we are still learning how community-level factors, such as host diversity, abundance, and composition, contribute to pathogen spread for many host-pathogen systems. Evaluating relationships among multiple pathogens and hosts may clarify whether particular host or pathogen traits consistently drive links between community factors and pathogen prevalence. Pollinators are a good system to test how community composition influences pathogen spread because pollinator communities are extremely variable and contain several multi-host pathogens transmitted on shared floral resources. We conducted a field survey of four pollinator species to test the prevalence of three RNA viruses (deformed wing virus, black queen cell virus, and sacbrood virus) among pollinator communities with variable species richness, abundance, and composition. All three viruses showed a similar pattern of prevalence among hosts. Apis mellifera and Bombus impatiens had significantly higher viral prevalence than Lasioglossum spp. and Eucera pruinosa. In each species, lower virus prevalence was most strongly linked with greater pollinator community species richness. In contrast, pollinator abundance, species-specific pollinator abundance, and community composition were not associated with virus prevalence. Our results support a consistent dilution effect for multiple viruses and host species. Pollinators in species-rich communities had lower viral prevalence than pollinators from species-poor communities, when accounting for differences in pollinator abundance. Species-rich communities likely had lower viral prevalence because species-rich communities contained more native bee species likely to be poor viral hosts than species-poor communities, and all communities contained the highly competent hosts A. mellifera and B. impatiens. Interestingly, the strength of the dilution effect was not consistent among hosts. Instead, host species with low viral prevalence exhibited weaker dilution effects compared to hosts with high viral prevalence. Therefore, host species susceptibility and competence for each virus may contribute to variation in the strength of dilution effects. This study expands biodiversity-disease studies to the pollinator-virus system, finding consistent evidence of the dilution effect among multiple similar pathogens that infect "replicate" host communities.


Assuntos
Biodiversidade , Especificidade de Hospedeiro , Animais , Abelhas , Prevalência , Vírus de RNA
8.
Proc Biol Sci ; 288(1943): 20203010, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33468004

RESUMO

Most recognition is based on identifying features, but specialization for face recognition in primates relies on a different mechanism, termed 'holistic processing' where facial features are bound together into a gestalt which is more than the sum of its parts. Here, we test whether individual face recognition in paper wasps also involved holistic processing using a modification of the classic part-whole test in two related paper wasp species: Polistes fuscatus, which use facial patterns to individually identify conspecifics, and Polistes dominula, which lacks individual recognition. We show that P. fuscatus use holistic processing to discriminate between P. fuscatus face images but not P. dominula face images. By contrast, P. dominula do not rely on holistic processing to discriminate between conspecific or heterospecific face images. Therefore, P. fuscatus wasps have evolved holistic face processing, but this ability is highly specific and shaped by species-specific and stimulus-specific selective pressures. Convergence towards holistic face processing in distant taxa (primates, wasps) as well as divergence among closely related taxa with different recognition behaviour (P. dominula, P. fuscatus) suggests that holistic processing may be a universal adaptive strategy to facilitate expertise in face recognition.


Assuntos
Reconhecimento Facial , Vespas , Animais , Reconhecimento Psicológico , Especificidade da Espécie
9.
Curr Biol ; 30(15): 3007-3010.e2, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32589910

RESUMO

Many animals minimize the costs of conflict by using social eavesdropping to learn about the fighting ability of potential rivals before they interact. Learning about individual conspecifics via social eavesdropping allows individuals to assess potential opponents without personal risk. However, keeping track of a network of individually differentiated social relationships is thought to be cognitively challenging. Here, we test how Polistes fuscatus nest-founding queens use social eavesdropping to assess individual rivals. Bystanders watched conspecifics fight through a clear partition. Then, bystanders were allowed to interact with fighters. Bystander behavior toward fighters was strongly influenced by the observed fight; bystanders were less aggressive toward fighters that were seen to initiate more and receive less aggression. Control trials allow us to reject alternative explanations for the link between observed aggression and bystander behavior, including priming or winner/loser effects. Therefore, P. fuscatus wasps observe and remember a complex network of social interactions between individual conspecifics rather than only paying attention to individuals they interact with directly. Wasps have an impressive capacity to learn, remember, and make social deductions about individuals. These results indicate that insects can have surprisingly complex social lives involving a network of individually differentiated social relationships.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Relações Interpessoais , Aprendizagem/fisiologia , Comportamento Social , Vespas/fisiologia , Animais , Conflito Psicológico , Feminino , Masculino , Rememoração Mental , Interação Social
10.
Philos Trans R Soc Lond B Biol Sci ; 375(1802): 20190482, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32420854

RESUMO

Many aspects of behaviour depend on recognition, but accurate recognition is difficult because the traits used for recognition often overlap. For example, brood parasitic birds mimic host eggs, so it is challenging for hosts to discriminate between their own eggs and parasitic eggs. Complex signals that occur in multiple sensory modalities or involve multiple signal components are thought to facilitate accurate recognition. However, we lack models that explore the effect of complex signals on the evolution of recognition systems. Here, we use individual-based models with a genetic algorithm to test how complex signals influence recognition thresholds, signaller phenotypes and receiver responses. The model has three main results. First, complex signals lead to more accurate recognition than simple signals. Second, when two signals provide different amounts of information, receivers will rely on the more informative signal to make recognition decisions and may ignore the less informative signal. As a result, the particular traits used for recognition change over evolutionary time as sender and receiver phenotypes evolve. Third, complex signals are more likely to evolve when recognition errors are high cost than when errors are low cost. Overall, redundant, complex signals are an evolutionarily stable mechanism to reduce recognition errors. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.


Assuntos
Mimetismo Biológico , Aves/fisiologia , Sinais (Psicologia) , Interações Hospedeiro-Parasita , Reconhecimento Psicológico , Animais , Evolução Biológica , Modelos Biológicos , Óvulo
11.
Horm Behav ; 123: 104533, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31185222

RESUMO

The 'challenge hypothesis' provides a predictive framework for how the social environment influences within-species variation in hormone titers. High testosterone levels are beneficial during reproduction and competition, but they also impose costs because they may suppress traits like parental care and immunity. As a result, the challenge hypothesis predicts that individuals will change their testosterone levels to match the current social environment. Although the vast majority of work on the challenge hypothesis has focused on androgens in vertebrates, there is growing evidence that insect hormones, especially juvenile hormone (JH), may respond to social stimuli in ways that parallel androgens in vertebrates. Many insects rapidly upregulate JH titers during social competition with rivals. Some insects also modulate JH titers based on contest outcomes, with winners upregulating JH and losers downregulating JH. This review will integrate work on social modulation of hormone titers in vertebrates and insects. First, we provide background on insect hormones and describe the functional parallels between androgens and JH. Second, we review evidence that insects rapidly change JH titers in response to social competition. Finally, we highlight opportunities for future work on social modulation of hormones in insects. Overall, the challenge hypothesis provides a useful conceptual framework for hypothesis-driven research in insect endocrinology. Comparing vertebrates and insects provides insight into how selection has shaped patterns of hormone responsiveness as well as the generality of hypotheses originally developed for vertebrates.


Assuntos
Insetos/fisiologia , Comportamento Sexual Animal/fisiologia , Meio Social , Agressão/fisiologia , Androgênios/metabolismo , Animais , Hormônios Juvenis , Reprodução/fisiologia , Comportamento Social
12.
Biol Lett ; 15(5): 20190015, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31064309

RESUMO

Transitive inference (TI) is a form of logical reasoning that involves using known relationships to infer unknown relationships (A > B; B > C; then A > C). TI has been found in a wide range of vertebrates but not in insects. Here, we test whether Polistes dominula and Polistes metricus paper wasps can solve a TI problem. Wasps were trained to discriminate between five elements in series (A0B-, B0C-, C0D-, D0E-), then tested on novel, untrained pairs (B versus D). Consistent with TI, wasps chose B more frequently than D. Wasps organized the trained stimuli into an implicit hierarchy and used TI to choose between untrained pairs. Species that form social hierarchies like Polistes may be predisposed to spontaneously organize information along a common underlying dimension. This work contributes to a growing body of evidence that the miniature nervous system of insects does not limit sophisticated behaviours.


Assuntos
Vespas , Animais , Condicionamento Operante , Resolução de Problemas
13.
Evolution ; 72(12): 2728-2735, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30259523

RESUMO

Although developmental plasticity facilitates the evolutionary origin of many traits, the role of plasticity in the origin of novel communication systems has received little attention. If plasticity mediates the origin of new communication systems, exposure to a novel environment will induce new traits that could function as signals or receiver responses. Here, we test whether plasticity facilitates the origin of individual recognition. We reared a species of paper wasp that naturally lacks individual recognition (Polistes metricus) with a relative that has facial patterns that signal individual identity (Polistes fuscatus). We found P. metricus reared with individual identity signals learned unique wasp faces significantly more accurately than P. metricus reared without individual identity signals. However, exposure to individual identity signals was not sufficient to induce individual recognition in social contexts. These results suggest that if variable facial patterns arose in P. metricus, wasps would immediately improve their ability learn variable facial patterns, thereby facilitating the origin of individual face recognition. Improved learning is an initial step toward individual recognition that would need to be refined by selection to produce an established signaling system. Developmental plasticity may be an underappreciated factor facilitating the evolutionary origin of novel recognition systems.


Assuntos
Comunicação Animal , Evolução Biológica , Vespas/crescimento & desenvolvimento , Vespas/genética , Animais , Feminino , Individualidade , Aprendizagem , Masculino , Pigmentação/genética , Pigmentação/fisiologia , Reconhecimento Psicológico , Seleção Genética , Especificidade da Espécie
14.
Ecology ; 99(10): 2405, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29999519

RESUMO

Cooperative breeding decreases the direct reproductive output of subordinate individuals, but cooperation can be evolutionarily favored when there are challenges or constraints to breeding independently. Environmental factors, including temperature, precipitation, latitude, high seasonality, and environmental harshness have been hypothesized to correlate with the presence of cooperative breeding. However, to test the relationship between cooperation and ecological constraints requires comparative data on the frequency and variation of cooperative breeding across differing environments, ideally replicated across multiple species. Paper wasps are primitively social species, forming colonies composed of reproductively active dominants and foraging subordinates. Adult female wasps, referred to as foundresses, initiate new colonies. Nests can be formed by a single solitary foundress (noncooperative) or by multiple foundress associations (cooperative). Cooperative behavior varies within and among species, making paper wasps species well suited to disentangling ecological correlates of variation in cooperative behavior. This data set reports the frequency and extent of cooperative nest founding for 87 paper wasp species. Data were assembled from more than 170 published sources, previously unpublished field observations, and photographs contributed by citizen scientists to online natural history repositories. The data set includes 25,872 nest observations and reports the cooperative behavioral decisions for 45,297 foundresses. Species names were updated to reflect modern taxonomic revisions. The type of substrate on which the nest was built is also included, when available. A smaller population-level version of this data set found that the presence or absence of cooperative nesting in paper wasps was correlated with temperature stability and environmental harshness, but these variables did not predict the extent of cooperation within species. This expanded data set contains details about individual nests and further increases the power to address the relationship between the environment and the presence and extent of cooperative breeding. Beyond the ecological drivers of cooperation, these high-resolution data will be useful for future studies examining the evolutionary consequences of variation in social behavior. This data set may be used for research or educational purposes provided that this data paper is cited.

15.
Am Nat ; 191(5): 595-603, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29693440

RESUMO

Research on individual recognition often focuses on species-typical recognition abilities rather than assessing intraspecific variation in recognition. As individual recognition is cognitively costly, the capacity for recognition may vary within species. We test how individual face recognition differs between nest-founding queens (foundresses) and workers in Polistes fuscatus paper wasps. Individual recognition mediates dominance interactions among foundresses. Three previously published experiments have shown that foundresses (1) benefit by advertising their identity with distinctive facial patterns that facilitate recognition, (2) have robust memories of individuals, and (3) rapidly learn to distinguish between face images. Like foundresses, workers have variable facial patterns and are capable of individual recognition. However, worker dominance interactions are muted. Therefore, individual recognition may be less important for workers than for foundresses. We find that (1) workers with unique faces receive amounts of aggression similar to those of workers with common faces, indicating that wasps do not benefit from advertising their individual identity with a unique appearance; (2) workers lack robust memories for individuals, as they cannot remember unique conspecifics after a 6-day separation; and (3) workers learn to distinguish between facial images more slowly than foundresses during training. The recognition differences between foundresses and workers are notable because Polistes lack discrete castes; foundresses and workers are morphologically similar, and workers can take over as queens. Overall, social benefits and receiver capacity for individual recognition are surprisingly plastic.


Assuntos
Reconhecimento Psicológico , Comportamento Social , Vespas , Animais
16.
Curr Zool ; 64(1): 45-52, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29492037

RESUMO

Consistent differences in behavior between individuals, otherwise known as animal personalities, have become a staple in behavioral ecology due to their ability to explain a wide range of phenomena. Social organisms are especially serviceable to animal personality techniques because they can be used to explore behavioral variation at both the individual and group level. Despite the success of personality research in social organisms generally, and social Hymenoptera in particular, social wasps (Vespidae) have received little to no attention in the personality literature. In the present study, we test Polistes metricus (Vespidae; Polistinae) paper wasp queens for the presence of repeatable variation in, and correlations ("behavioral syndromes") between, several commonly used personality metrics: boldness, aggressiveness, exploration, and activity. Our results indicate that P. metricus queens exhibit personalities for all measured traits and correlations between different behavioral measures. Given that paper wasps have served as a model organism for a wide range of phenomena such as kin selection, dominance hierarchies, mate choice, facial recognition, social parasitism, and chemical recognition, we hope that our results will motivate researchers to explore whether, or to what degree, queen personality is important in their research programs.

17.
Proc Biol Sci ; 285(1872)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29436498

RESUMO

In many cooperatively breeding animals, subordinate group members have lower reproductive capacity than dominant group members. Theory suggests subordinates may downregulate their reproductive capacity because dominants punish subordinates who maintain high fertility. However, there is little direct experimental evidence that dominants cause physiological suppression in subordinates. Here, we experimentally test how social interactions influence subordinate reproductive hormones in Polistes dominula paper wasps. Polistes dominula queens commonly found nests in cooperative groups where the dominant queen is more fertile than the subordinate queen. In this study, we randomly assigned wasps to cooperative groups, assessed dominance behaviour during group formation, then measured levels of juvenile hormone (JH), a hormone that mediates Polistes fertility. Within three hours, lowest ranking subordinates had less JH than dominants or solitary controls, indicating that group formation caused rapid JH reduction in low-ranking subordinates. In a second experiment, we measured the behavioural consequences of experimentally increasing subordinate JH. Subordinates with high JH-titres received significantly more aggression than control subordinates or subordinates from groups where the dominant's JH was increased. These results suggest that dominants aggressively punished subordinates who attempted to maintain high fertility. Low-ranked subordinates may rapidly downregulate reproductive capacity to reduce costly social interactions with dominants. Rapid modulation of subordinate reproductive physiology may be an important adaptation to facilitate the formation of stable, cooperative groups.


Assuntos
Regulação para Baixo , Hormônios Juvenis/metabolismo , Vespas/fisiologia , Adaptação Fisiológica , Animais , Comportamento Cooperativo , Feminino , Relações Interpessoais , Reprodução , Predomínio Social
18.
J Exp Biol ; 220(Pt 12): 2149-2153, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28615487

RESUMO

The specialized ability to learn and recall individuals based on distinct facial features is known in only a few, large-brained social taxa. Social paper wasps in the genus Polistes are the only insects known to possess this form of cognitive specialization. We analyzed genome-wide brain gene expression during facial and pattern training for two species of paper wasps (P. fuscatus, which has face recognition, and P. metricus, which does not) using RNA sequencing. We identified 237 transcripts associated with face specialization in P. fuscatus, including some transcripts involved in neuronal signaling (serotonin receptor and tachykinin). Polistes metricus that learned faces (without specialized learning) and P. fuscatus in social interactions with familiar partners (from a previous study) showed distinct sets of brain differentially expressed transcripts. These data suggest face specialization in P. fuscatus is related to shifts in the brain transcriptome associated with genes distinct from those related to general visual learning and social interactions.


Assuntos
Cognição , Reconhecimento Visual de Modelos , Transcriptoma , Vespas/fisiologia , Animais , Encéfalo/metabolismo , Reconhecimento Facial , Aprendizagem , Reconhecimento Psicológico , Análise de Sequência de RNA , Especificidade da Espécie , Vespas/genética
19.
Philos Trans R Soc Lond B Biol Sci ; 372(1724)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28533463

RESUMO

Animal coloration is influenced by selection pressures associated with communication. During communication, signallers display traits that inform receivers and modify receiver behaviour in ways that benefit signallers. Here, we discuss how selection on signallers to convey different kinds of information influences animal phenotypes and genotypes. Specifically, we address the phenotypic and genetic consequences of communicating three different kinds of information: individual identity, behavioural strategy and quality. Previous work has shown signals that convey different kinds of information differ in terms of the (i) type of selection acting on signallers (e.g. directional, stabilizing, or negative frequency dependent), and (ii) developmental basis of signals (i.e. heritability, genetic architecture). These differences result in signals that convey different information having consistently different phenotypic properties, including the amount, modality and continuity of intraspecific variation. Understanding how communication influences animal phenotypes may allow researchers to quickly identify putative functions of colour variation prior to experimentation. Signals that convey different information will also have divergent evolutionary consequences. For example, signalling individual identity can increase genetic diversity, signalling quality may decrease diversity, and signalling strategy can constrain adaptation and contribute to speciation. Considering recent advances in genomic resources, our framework highlights new opportunities to resolve the evolutionary consequences of selection on communication across diverse taxa and signal types.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.


Assuntos
Comunicação Animal , Cor , Variação Genética , Invertebrados/fisiologia , Fenótipo , Vertebrados/fisiologia , Animais , Evolução Biológica , Invertebrados/genética , Vertebrados/genética
20.
R Soc Open Sci ; 4(2): 161008, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28386452

RESUMO

Understanding the developmental and evolutionary processes that generate and maintain variation in natural populations remains a major challenge for modern biology. Populations of Polistes fuscatus paper wasps have highly variable colour patterns that mediate individual recognition. Previous experimental and comparative studies have provided evidence that colour pattern diversity is the result of selection for individuals to advertise their identity. Distinctive identity-signalling phenotypes facilitate recognition, which reduces aggression between familiar individuals in P. fuscatus wasps. Selection for identity signals may increase phenotypic diversity via two distinct modes of selection that have different effects on genetic diversity. Directional selection for increased plasticity would greatly increase phenotypic diversity but decrease genetic diversity at associated loci. Alternatively, heritable identity signals under balancing selection would maintain genetic diversity at associated loci. Here, we assess whether there is heritable variation underlying colour pattern diversity used for facial recognition in a wild population of P. fuscatus wasps. We find that colour patterns are heritable and not Mendelian, suggesting that multiple loci are involved. Additionally, patterns of genetic correlations among traits indicated that many of the loci underlying colour pattern variation are unlinked and independently segregating. Our results support a model where the benefits of being recognizable maintain genetic variation at multiple unlinked loci that code for phenotypic diversity used for recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...